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Supplementary Figures 

 

 

 
Supplementary Figure S1. Co-transcription of predicted operon and non-operon genes 

The mean Pearson’s correlation coefficient for every pair of genes in an operon in D. viviparus 

are plotted (green) against that of a pseudo-operon of the same size, consisting of randomly 

selected genes (red). The correlation coefficients for genes in predicted operons are 

significantly higher than for background. 

 



 

Supplementary Figure S2. Maximum expression (FPKM) of Wolbachia-like and other 
genes throughout all life cycle stages of D. viviparus 

The maximum expression level (given in fragments per kilobase per million reads mapped, 
FPKM) for each gene was determined and potted to compare the expression of Wolbachia-like 
and non-Wolbachia-like genes. Wolbachia-like genes were transcribed at low levels compared 
to other genes (average peak expression of 77.7 FPKM compared to 3,356.6 FPKM for other 
genes; P < 10-10, T-test using log-scale FPKM values).  
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Supplementary Figure S3. Gene expression throughout the life cycle of Dictyocaulus 

viviparus 

The number of genes with detectable expression (≥50% breadth of coverage with RNAseq 

reads) at each life cycle stage is indicated on the graph. 11,179 of the 14,171 inferred genes 

(79% of all genes) were transcribed, to some degree, in every life cycle stage. Of these, 1,102 

showed no statistically significant variation in expression level over the course of the life cycle 

and were considered to be constitutively expressed. 

  



 
Supplementary Figure S4. Identification of X-linked and autosomal chromosome contigs 

Autosomal (blue; n=563; combined length 119,815,143 bp) and X-linked (red; n=130; combined 

length 14,366,088 bp) contigs (> 50kb) were identified based on the contig-wise mean 

homozygosity and total median depth of coverage in male samples. 

 



 
Supplementary Figure S5. Impact of contamination filtering in HaplotypeCaller on 

heterozygosity 

Fractions of reads for each alternate allele were removed through biased down-sampling, and 

the observed level of heterozygosity in the resultant genotype call set was assessed relative to 

the expected value under Hardy-Weinberg equilibrium. 

 



Supplementary Methods 

 

Parasite material and nucleic acid isolation 

 D. viviparus samples from various life cycle stages were collected from parasite naïve, 

experimentally infected Holstein-Friesian calves (Bos taurus) as previously described1,2. First stage larvae 

(L1) were isolated from cow feces collected directly from the cow rectum using the Baermann method. 

For development into second and third stage larvae (L2, L3), L1 were incubated in tap water for one and 

six days, respectively. Isolated L3 were chilled to induce hypobiosis and introduced to calves via oral 

infection; calves were sacrificed and mixed-sex hypobiotic L5 (<5mm in length) were collected from the 

lungs 35 days post-infection2. Calves infected with un-chilled L3 were sacrificed at seven, 15 and 28 days 

post infection for collection of L4, L5 and adults via lung perfusion. L5 and adult males and females were 

separated based on morphological characteristics3. Embryonated eggs were extracted from patent 

females. Precautions were taken to prevent exposure of experimental hosts to other parasite species and 

This included the use of young calves that had never been subjected to pasture, screening cows for 

parasitic infection prior to use, housing cows in stables with paved outdoor access (rather than pasture), 

feeding on hay and concentrate rather than grass, etc. D. viviparus adults and larvae are readily 

distinguishable from other nematodes basted on morphology and movement patterns, and all D. viviparus 

specimens were subjected to morphological examination prior to use in experiments. 

 Genomic DNA for the reference genome was isolated from adult male worms (DvHannover2000 

strain) using a NucleoSpin Tissue DNA isolation kit according to the manufacturer’s recommendations 

(Machery-Nagel, Düren, Germany). For Roche/454 cDNA libraries, individual lungworm stages were 

homogenized in 5.5M GIT buffer (5.5M guanidinium thiocyanate, 1 M sodium citrate, pH 7.0) using the 

Precellys® 24 tissue homogenizer (Peqlab Biotechnologie, Erlangen, Germany), and mRNA was isolated 

from the homogenate using the Illustra QuickPrep Micro mRNA Purification Kit (GE Healthcare, 

Buckinghamshire, UK)1. For Illumina cDNA libraries, individual lungworm stages were homogenized in 

600µL RLT-buffer (RNeasy® Mini Kit, Qiagen, Hilden, Germany) and 6µL 2-mercaptoethanol (Roth, 

Karlsruhe, Germany) using the Precellys® 24 tissue homogenizer (Peqlab Biotechnologie), and total RNA 

was isolated from the homogenate using RNeasy® Mini Kit (Qiagen) according the manufacturer’s 



suggested protocol, including the optional on-column DNase digest. The integrity and quantity of nucleic 

acid samples were assessed using the Bioanalyzer 2100 (Agilent Technologies, Cedar Creek, Texas). 

 

cDNA sequencing on the Roche/454 platform 

 Titanium fragment libraries representing D. viviparus eggs, mixed L1/L2, L3, mixed-sex L5, adult 

males, and adult females were generated and sequenced on a Genome Sequencer Titanium FLX (Roche 

Diagnostics, Indianapolis, IN, USA) as previously described4,5. Raw reads were deposited in the GenBank 

sequence read archive (SRA) under BioProject PRJNA72587 (Supplementary Table S10). Following 

analytical processing6, reads were assembled using Newbler, invoking the cDNA-specific assembly 

option as previously described7. 

 

cDNA sequencing on the Illumina platform 

 Duplicate paired-end cDNA libraries representing D. viviparus eggs, L1, L2, L3, L4, mixed-sex L5, 

male L5, female L5, hypobiotic L5, adult males, and adult females were generated as previously 

described using standard protocols8. Raw reads were deposited in the GenBank Sequence Read Archive 

under BioProject ID PRJNA72587 and in Gene Expression Omnibus (GEO) under Series accession 

number GSE73863 (Supplementary Table S10). Adapter trimming, sequence quality trimming, length 

filtering, complexity filtering, and contaminant filtering were performed as previously described9. The 

remaining high-quality RNAseq reads were aligned to the genome assembly using Tophat210 (version 

2.0.8, default parameters) and assembled into full-length transcripts with Cufflinks (version 2.1.111) using 

an established protocol12. 

 

Genome sequencing, assembly, and annotation 

 Whole genome shotgun fragment and paired-end libraries (3kb and 8kb insert) were constructed 

according to standard methods and sequenced on the Roche/454 platform13. Sequencing coverage was 

estimated at 12.3x, 21.7x and 4.4x for the fragment, 3kb, and 8kb insert libraries, respectively. Relevant 

linker and adapter sequences were trimmed, and cleaned reads were assembled with Newbler13. An in-

house assembly improvement tool, Pygap, was used to join and extent contigs using unassembled 



Illumina reads when possible. A repeat library was generated using Repeatmodler 

(http://repeatmasker.org), and repeats were characterized by screening against Repbase (April 2014) 

with CENSOR (version 4.2.29)14,15. Ribosomal RNA genes were identified using RNAmmer16, and 

transfer RNA genes were identified using tRNAscan-SE17. Other non-coding RNAs (e.g., microRNAs) 

were identified by sequence homology searches against the Rfam database18. Repeats and predicted 

non-protein-coding RNAs were masked with RepeatMasker (http://repeatmasker.org).  

 Protein coding genes were predicted using a combination of the ab initio programs Snap19, 

Fgenesh20, and Augustus21 and the MAKER annotation pipeline22 which employs assembled mRNAs (i.e, 

Illumina cDNA assembled with Cufflinks and Roche/454 cDNA assembled with Newbler), EST (GenBank 

EST database), and protein evidence from the same and related species to aid in gene structure 

determination and modification. A consensus gene set based on these predictions was generated using a 

hierarchical approach developed at The Genome Institute23, and gene product naming was determined by 

BER (http://ber.sourceforge.net). An extended annotation of these predicted genes is available at 

nematode.net/Dviviparus_genome.html and will be referred to in this manuscript as NN table. 

 

Building orthologous protein family groups with related species 

 InParanoid (version 4.1)24,25 was used to perform a direct comparison between D. viviparus and 

C. elegans proteins using the longest isoform of each C. elegans gene from WormBase build WS230. 

OrthoMCL26 was used to perform a broader comparison with 16 species, including D. viviparus and the 

following: Saccharomyces cerevisciae, Drosophila melanogaster, and Homo sapiens from Ensembl 

release 6727; Bos taurus (release 100), Ovis aries (release 100), and Sus scrofa (release 103) from 

Genbank28; Caenorhabditis elegans and Brugia malayi WormBase release 23029; Trichonella spiralis30; 

Ascaris suum31; Haemonchus contortus32; Necator americanus23; Loa loa33; Trichuris trichiura version 2.0 

from the Helminth Genomes Initiative34; Trichuris suis from an in-house genome sequencing project. In 

applicable cases, the longest protein isoform was used as a representative for alternatively spliced genes 

in the OrthoMCL analysis. The birth and death of orthologous protein families (OPFs) among these 

species was predicted using Dollop (http://evolution.genetics.washington.edu/phylip/doc/dollop.html) as 

previously described35. Genes were considered D. viviparus-specific if they were not orthologous to any 



genes in the 15 other species used in this analysis. OPFs containing orthologs from D. viviparus and at 

least one other nematode were subjected to a binomial distribution test to determine enrichment of D. 

viviparus orthologs with the expected (background) percentage being the proportion of genes from the 

genome belonging to the OPF (averaged for each other nematode in the OPF), the number of 

"successes" being the number of D. viviparus genes in the OPF, and the number of "trials" being the total 

number of D. viviparus genes (14,171). This statistic is non-parametric, and the P values were corrected 

using FDR population correction36.  

 

Prediction of D. viviparus operons 

 The known spliced leader sequences from clade V nematodes (3 SL1 and 36 SL2 sequences37) 

were used to find related trans-spliced genes in D. viviparus as previously described23. The RNAseq 

reads that satisfied the following criteria for similarity to known SL1 and SL2 sequences were considered 

to be sourced from a gene trans-spliced with a D. viviparus spliced leader sequence: 

1. A hit was reported by blat, using the options ‘-tileSize=6 -oneOff=1 -minScore=12’. Matches on 

either strand were considered hits. 

2. The match on the target sequence (RNA-Seq read) started, at most, 0 (for SL1) or 8 (for SL2) 

bases from either end. 

3. The match on the query (the known SL sequence) started at most 2 (for SL1) or 8 (for SL2) 

bases from the 5’ end. 

4. At most 1 (for SL1) or 2 (for SL2) mismatches were allowed. 

5a. For SL1, no gaps were allowed within the aligned part of the sequence. 

5b. For SL2, the aligned part was to be at most 8 bases shorted than the SL2 sequence length 

(e.g. for a 22 base SL2, any read with aligned region smalled than 14 bases is rejected). 

6. For SL2, at most a single gap of length 1 base was allowed on either the query or the target. 

The reads thus identified were then aligned to the Cufflinks-assembled consensus transcripts and only 

those cases where the corresponding gene model is on the same strand as the putative SL sequence 

identified were considered to be potentially SL-trans-spliced genes.  



 Reciprocal best BLAST hits (using WU-BLAST with cutoff of 30% identity and 35 bits) between D. 

viviparus genes and 3,677 C. elegans operon genes (WS230)38 were used to infer D. viviparus operons 

as previously described23. Operons with at least two D. viviparus homologs that are adjacent to each 

other or are separated by one neighbor were counted. For every pair of genes in every inferred operon in 

D. viviparus, Pearson’s correlation coefficient was calculated for FPKM values determined from our 

RNAseq data. This was compared to a “background” set of non-operon neighboring gene pairs. 5000 

pairs of genes belonging to same operon were selected at random (with replacement) and compared to 

5000 randomly selected neighboring gene pairs from the set of non-operon genes. This was also tested 

with 10 randomly selected instances of the background set for each operon with even more significantly 

different distributions.  

 

Functional annotation of protein coding genes 

 Inferred protein sequences were compared to known protein sequences by BLASTP39 against the 

GenBank non-redundant protein database (NR, downloaded April 15, 2014). Transmembrane domains 

and classical secretion peptides were predicted using Phobius40,41, and non-classical secretion signals 

were predicted using SecretomeP42. Putative proteases and inhibitors were identified and classified using 

the online MEROPS peptidase database server (release 9.11)43. Proteins were assigned to KEGG 

orthologous groups, pathways and pathway modules using KEGGscan44 with KEGG release 6845. 

Associations with InterPro protein domains and Gene Ontology (GO) classifications were inferred using 

InterProScan46-48. InterPro domain enrichment for gene sets was determined (for each domain 

represented in at least 5 genes) using a non-parametric binomial distribution test with the expected 

(background) percentage being the proportion of genes in the genome containing the InterPro domain, 

the number of "successes" being the number of genes in the target set containing the InterPro domain, 

and the number of "trials" being the total number of genes in the target set. A 0.01 p value cutoff was 

used for significance (after Benjamini-Hochberg false-discovery-rate (FDR) population correction for the 

total number of domains)36. Functional enrichment of GO terms related to particular subsets of proteins 

was calculated using FUNC49 with an adjusted p-value cutoff of 0.01. C. elegans RNAi effector proteins 

were reported previously50. The longest isoform of each C. elegans RNAi effector protein was taken from 



WormBase release WS230 and matched to D. viviparus orthologs by inParanoid or by best bi-directional 

BLASTP match (e-value < 1e-05).  

C. elegans proteins were screened against the collection of kinase domain models in 

Kinomer51,52. Custom score thresholds were applied for each kinase group and adjusted until an 

hmmpfam search53 came as close as possible to identifying the known C. elegans kinases. The same 

procedure and cutoffs were applied to the D. viviparus proteins to identify kinases as previously 

described23,30. 

High confidence sets of enzymes available to the 5 species were obtained by using local version 

of KAAS server54, with the bit-score threshold set at 35. modDFS was then used to find which of the 

nematode-relevant modules were strictly complete in the species55. Chokepoints of KEGG metabolic 

pathways were defined as a reaction that either consumes a unique substrate or produces a unique 

product56. The reaction database from KEGG v6545 was used to identify chokepoints as previously 

described57. D. viviparus proteins were assigned EC numbers based on the output of KEGGscan 

(described above). Protein Data Bank58 and DrugBank59 were identified by WU-BLAST60 against 

database sequences using a cutoff of 30% sequence identity over 75% of the length of the query. 

 

Genomic variation analysis 

 Genomic DNA was isolated from four male worms and five female worms of the DvHannover 

2010 strain obtained from a single host, and paired end libraries were generated and sequenced on the 

Illumina HiSeq 2500 platform. Raw reads were deposited in the SRA under BioProject ID PRJNA72587 

(Supplementary Table S11). Data available from the SRA representing a strain from Cameroon were also 

included in our analysis (SRA accession ERX364141)61. Relevant barcodes and adapters were trimmed, 

and reads of less than 60bp in length and/or with uncalled bases were discarded using Flexbar62. 

Remaining reads were aligned to the DvHannover2000 reference genome using BWA-MEM (version 

bwa0.7.5a, default parameters63). Duplicate reads were marked for removal using Picard tools 

(http://broadinstitute.github.io/picard/). Reads were realigned around indels using the Genome Analysis 

Toolkit (GATK, v.3.3.0)64, and variants were called using GATK’s HaplotypeCaller. High quality SNPs 

were obtained using GATK’s VariantFiltration with the following set of filters: DP (maximum depth) > 949; 



QD (variant confidence divided by the unfiltered depth of non-reference samples) < 2.0; FS (Phred-scaled 

p-value using Fisher’s Exact Test to detect strand bias in the reads) > 60.0; MQ (Root Mean Square of 

the mapping quality of the reads across all samples) < 40.0; MQRankSum (Mann-Whitney Rank Sum 

Test for mapping qualities) < -12.5; ReadPosRankSum (Mann-Whitney Rank Sum Test for the distance 

from the end of the read for reads with the alternate allele) < -8.0. Annotated SNPs were classified 

according to their effect based on their genomic location context using SnpEff (v. 3.5)65.  

 Contigs predicted to represent the X chromosome (i.e., hemizygous loci) were identified based on 

contig-wise mean homozygosity and total median depth of coverage in male samples (Supplementary 

Fig. S4). Using SNPs located on putatively autosomal contigs, sample relationships were examined by 

multidimensional scaling (MDS) analysis based on pairwise identity-by-state (IBS) distance in PLINK66. In 

order to minimize the effect of excess heterozygosity in female samples (due to embryonic DNA of non-

maternal origin) on MDS clustering, variants were called using HaplotypeCaller with the “-contamination” 

option that invokes removal of bases supporting putative variants. The contamination fraction parameter 

was set at 0.25, based on the restoration to the expected heterozygosity under Hardy–Weinberg 

equilibrium, as judged by FIS (inbreeding coefficient) (Supplementary Fig. S5). F-statistics and nucleotide 

diversity were computed using VCFtools (v0.1.12b)67. Mitochondrial SNPs were identified using an 

identical procedure to that outlined above for the nuclear genomic variants except that the reference 

alignment was generated using a previously published mitochondrial genome (GenBank accession 

NC_019810). SNPs were called using GATK’s HaplotypeCaller with the -ploidy argument set to 1. A 

minimum spanning network68 was constructed for the mitochondrial haplotypes in PopART 

(http://popart.otago.ac.nz) using segregating SNPs with no missing genotype calls. 

 To calculate nucleotide diversity separately for the nonsynonymous and synonymous sites (πN 

and πS) within each gene, nonsynonymous or synonymous average pairwise differences were divided by 

the number of nonsynonymous or synonymous sites, respectively.. The number of nonsynonymous or 

synonymous sites was determined using KaKs_Calculator 2.069. Tajima’s D test70 was performed using 

VCFtools (v0.1.12b)67 for 5-kb sliding windows along the length of each contig. The gene-wise Tajima’s D 

statistic was calculated by averaging the D statistic values of all windows overlapping the gene footprint 

(including both exonic and intronic regions). 



 

 

Gene expression, alternative splicing and differential expression analyses 

 Pre-processed, paired-end, Illumina RNAseq reads were mapped onto the D. viviparus genome 

assembly with Tophat210 using the gff annotation file to guide alignments. Refcov71 was used to assess 

the genes’ breadth of coverage based on all available RNAseq datasets, and genes showing ≥50% 

breadth of coverage were characterized as expressed. The number of reads associated with each feature 

was determined using HTSeq-Count72. Mapped read counts and fragments per kilobase per million reads 

mapped (FPKM) values are available through GEO (Series accession GSE73863). Differentially 

expressed genes were predicted using DESeq2 (version 1.4.573) with an adjusted p-value cutoff of 0.1 

according to established protocols74. Statistically enriched InterPro domains and GO terms were 

determined as previously described. Over-representation of genes from each orthologous group 

classification (e.g., nematode-conserved, D. viviparus-specific, etc.) among sets of over-expressed genes 

was tested using a Binomial distribution test, with the expected (background) percentage being the 

proportion of genes from the genome belonging to the orthologous group classification, the number of 

"successes" being the number of overexpressed genes of interest belonging to the orthologous group 

classification, and the number of "trials" being the total number of overexpressed genes of interest. This 

statistic is non-parametric, and the P values were corrected using FDR population correction36. This test 

was also used in the same way to test enrichment for Wolbachia-like genes and genes grouped based on 

Tajima’s D and πN/πS values.
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